19 research outputs found

    Non-perturbative dynamics of hot non-Abelian gauge fields: beyond leading log approximation

    Get PDF
    Many aspects of high-temperature gauge theories, such as the electroweak baryon number violation rate, color conductivity, and the hard gluon damping rate, have previously been understood only at leading logarithmic order (that is, neglecting effects suppressed only by an inverse logarithm of the gauge coupling). We discuss how to systematically go beyond leading logarithmic order in the analysis of physical quantities. Specifically, we extend to next-to-leading-log order (NLLO) the simple leading-log effective theory due to Bodeker that describes non-perturbative color physics in hot non-Abelian plasmas. A suitable scaling analysis is used to show that no new operators enter the effective theory at next-to-leading-log order. However, a NLLO calculation of the color conductivity is required, and we report the resulting value. Our NLLO result for the color conductivity can be trivially combined with previous numerical work by G. Moore to yield a NLLO result for the hot electroweak baryon number violation rate.Comment: 20 pages, 1 figur

    The Genome Sequence of Caenorhabditis briggsae: A Platform for Comparative Genomics

    Get PDF
    The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes

    Differential Analysis of Ovarian and Endometrial Cancers Identifies a Methylator Phenotype

    Get PDF
    Despite improved outcomes in the past 30 years, less than half of all women diagnosed with epithelial ovarian cancer live five years beyond their diagnosis. Although typically treated as a single disease, epithelial ovarian cancer includes several distinct histological subtypes, such as papillary serous and endometrioid carcinomas. To address whether the morphological differences seen in these carcinomas represent distinct characteristics at the molecular level we analyzed DNA methylation patterns in 11 papillary serous tumors, 9 endometrioid ovarian tumors, 4 normal fallopian tube samples and 6 normal endometrial tissues, plus 8 normal fallopian tube and 4 serous samples from TCGA. For comparison within the endometrioid subtype we added 6 primary uterine endometrioid tumors and 5 endometrioid metastases from uterus to ovary. Data was obtained from 27,578 CpG dinucleotides occurring in or near promoter regions of 14,495 genes. We identified 36 locations with significant increases or decreases in methylation in comparisons of serous tumors and normal fallopian tube samples. Moreover, unsupervised clustering techniques applied to all samples showed three major profiles comprising mostly normal samples, serous tumors, and endometrioid tumors including ovarian, uterine and metastatic origins. The clustering analysis identified 60 differentially methylated sites between the serous group and the normal group. An unrelated set of 25 serous tumors validated the reproducibility of the methylation patterns. In contrast, >1,000 genes were differentially methylated between endometrioid tumors and normal samples. This finding is consistent with a generalized regulatory disruption caused by a methylator phenotype. Through DNA methylation analyses we have identified genes with known roles in ovarian carcinoma etiology, whereas pathway analyses provided biological insight to the role of novel genes. Our finding of differences between serous and endometrioid ovarian tumors indicates that intervention strategies could be developed to specifically address subtypes of epithelial ovarian cancer

    Risk of Recurrent Arterial Ischemic Stroke in Childhood: A Prospective International Study.

    Get PDF
    Background and purposePublished cohorts of children with arterial ischemic stroke (AIS) in the 1990s to early 2000s reported 5-year cumulative recurrence rates approaching 20%. Since then, utilization of antithrombotic agents for secondary stroke prevention in children has increased. We sought to determine rates and predictors of recurrent stroke in the current era.MethodsThe Vascular Effects of Infection in Pediatric Stroke (VIPS) study enrolled 355 children with AIS at 37 international centers from 2009 to 2014 and followed them prospectively for recurrent stroke. Index and recurrent strokes underwent central review and confirmation, as well as central classification of causes of stroke, including arteriopathies. Other predictors were measured via parental interview or chart review.ResultsOf the 355 children, 354 survived their acute index stroke, and 308 (87%) were treated with an antithrombotic medication. During a median follow-up of 2.0 years (interquartile range, 1.0-3.0), 40 children had a recurrent AIS, and none had a hemorrhagic stroke. The cumulative stroke recurrence rate was 6.8% (95% confidence interval, 4.6%-10%) at 1 month and 12% (8.5%-15%) at 1 year. The sole predictor of recurrence was the presence of an arteriopathy, which increased the risk of recurrence 5-fold when compared with an idiopathic AIS (hazard ratio, 5.0; 95% confidence interval, 1.8-14). The 1-year recurrence rate was 32% (95% confidence interval, 18%-51%) for moyamoya, 25% (12%-48%) for transient cerebral arteriopathy, and 19% (8.5%-40%) for arterial dissection.ConclusionsChildren with AIS, particularly those with arteriopathy, remain at high risk for recurrent AIS despite increased utilization of antithrombotic agents. Therapies directed at the arteriopathies themselves are needed

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Additional file 6: of Yoga versus education for Veterans with chronic low back pain: study protocol for a randomized controlled trial

    No full text
    Yoga Teacher Manual. A training and reference manual given to study yoga instructors that includes detailed information on the segment themes, weekby- week yoga class structure, teaching individual postures with or without modifications, teaching breathing exercises, and leading Veterans through integrated relaxation. (PDF 3.52 mb

    Pharmacological and biological evaluation of a series of substituted 1,4 naphthoquinone bioreductive drugs.

    No full text
    NoThe indolequinone compound EO9 has good pharmacodynamic properties in terms of bioreductive activation and selectivity for either NAD(P)H:quinone oxidoreductase-1 (NQO1)-rich aerobic or NQO1-deficient hypoxic cells. However, its pharmacokinetic properties are poor and this fact is believed to be a major reason for EO9's lack of clinical efficacy. The purpose of this study was to develop quinone-based bioreductive drugs that retained EO9's good properties, in terms of bioreductive activation, but have improved pharmacokinetic properties. Out of 11 naphthoquinone compounds evaluated, 2-aziridinyl-5-hydroxy-1,4-naphthoquinone (compound 2), 2,3-bis(aziridinyl)-5-hydroxy-1,4-naphthoquinone (compound 3), and 2-aziridinyl-6-hydroxymethyl-1,4-naphthoquinone (compound 11) were selected for further evaluation based on good substrate specificity for NQO1 and selectivity towards NQO1-rich cells in vitro. Compound 3 was of particular interest as it also demonstrated selectivity for NQO1-rich cells under hypoxic conditions. Compound 3 was not metabolised by murine whole blood in vitro (in contrast to compounds 2, 11 and EO9) and pharmacokinetic studies in non-tumour-bearing mice in vivo (at the maximum soluble dose of 60 mg kg¿1 administered intraperitoneally) demonstrated significant improvements in plasma half-life (16.2 min) and AUC values (22.5 ¿M h) compared to EO9 (T1/2 = 1.8 min, AUC = 0.184 ¿M h). Compound 3 also demonstrated significant anti-tumour activity against H460 and HCT-116 human tumour xenografts in vivo, whereas EO9 was inactive against these tumours. In conclusion, compound 3 is a promising lead compound that may target both aerobic and hypoxic fractions of NQO1-rich tumours and further studies to elucidate its mechanism of action and improve solubility are warranted
    corecore